Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(3): 596-608, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37885325

RESUMO

Acetogenic bacteria such as the thermophilic anaerobic model organism Moorella thermoacetica reduce CO2 with H2 as a reductant via the Wood-Ljungdahl pathway (WLP). The enzymes of the WLP of M. thermoacetica require NADH, NADPH, and reduced ferredoxin as reductants. Whereas an electron-bifurcating ferredoxin- and NAD+ -reducing hydrogenase HydABC had been described, the enzyme that reduces NADP+ remained to be identified. A likely candidate is the HydABCDEF hydrogenase from M. thermoacetica. Genes encoding for the HydABCDEF hydrogenase are expressed during growth on glucose and dimethyl sulfoxide (DMSO), an alternative electron acceptor in M. thermoacetica, whereas expression of the genes hydABC encoding for the electron-bifurcating hydrogenase is downregulated. Therefore, we have purified the hydrogenase from cells grown on glucose and DMSO to apparent homogeneity. The enzyme had six subunits encoded by hydABCDEF and contained 58 mol of iron and 1 mol of FMN. The enzyme reduced methyl viologen with H2 as reductant and of the physiological acceptors tested, only NADP+ was reduced. Electron bifurcation with pyridine nucleotides and ferredoxin was not observed. H2 -dependent NADP+ reduction was optimal at pH 8 and 60 °C; the specific activity was 8.5 U·mg-1 and the Km for NADP+ was 0.086 mm. Cell suspensions catalyzed H2 -dependent DMSO reduction, which is in line with the hypothesis that the NADP+ -reducing hydrogenase HydABCDEF is involved in electron transfer from H2 to DMSO.


Assuntos
Hidrogenase , Moorella , Hidrogenase/genética , Ferredoxinas/metabolismo , NADP/metabolismo , Proteínas de Bactérias/metabolismo , Substâncias Redutoras , Dimetil Sulfóxido , Glucose/metabolismo
2.
Appl Environ Microbiol ; 90(1): e0132923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112445

RESUMO

Common sterilization techniques for labile and sensitive materials have far-reaching applications in medical, pharmaceutical, and industrial fields. Heat inactivation, chemical treatment, and radiation are established methods to inactivate microorganisms, but pose a threat to humans and the environment and can damage susceptible materials or products. Recent studies have demonstrated that cold low-pressure plasma (LPP) treatment is an efficient alternative to common sterilization methods, as LPP's levels of radicals, ions, (V)UV-radiation, and exposure to an electromagnetic field can be modulated using different process gases, such as oxygen, nitrogen, argon, or synthetic (ambient) air. To further investigate the effects of LPP, spores of the Gram-positive model organism Bacillus subtilis were tested for their LPP susceptibility including wild-type spores and isogenic spores lacking DNA-repair mechanisms such as non-homologous end-joining (NHEJ) or abasic endonucleases, and protective proteins like α/ß-type small acid-soluble spore proteins (SASP), coat proteins, and catalase. These studies aimed to learn how spores resist LPP damage by examining the roles of key spore proteins and DNA-repair mechanisms. As expected, LPP treatment decreased spore survival, and survival after potential DNA damage generated by LPP involved efficient DNA repair following spore germination, spore DNA protection by α/ß-type SASP, and catalase breakdown of hydrogen peroxide that can generate oxygen radicals. Depending on the LPP composition and treatment time, LPP treatment offers another method to efficiently inactivate spore-forming bacteria.IMPORTANCESurface-associated contamination by endospore-forming bacteria poses a major challenge in sterilization, since the omnipresence of these highly resistant spores throughout nature makes contamination unavoidable, especially in unprocessed foods. Common bactericidal agents such as heat, UV and γ radiation, and toxic chemicals such as strong oxidizers: (i) are often not sufficient to completely inactivate spores; (ii) can pose risks to the applicant; or (iii) can cause unintended damage to the materials to be sterilized. Cold low-pressure plasma (LPP) has been proposed as an additional method for spore eradication. However, efficient use of LPP in decontamination requires understanding of spores' mechanisms of resistance to and protection against LPP.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Humanos , Bacillus subtilis/genética , Catalase/metabolismo , Esporos Bacterianos/fisiologia , Esterilização/métodos , Proteínas/metabolismo , Temperatura Alta , DNA/metabolismo
3.
Environ Microbiol ; 24(4): 2000-2012, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35278024

RESUMO

Moorella thermoacetica is one of the well-studied thermophilic acetogenic bacteria. It grows by oxidation of organic substrates, CO or H2 coupled to CO2 reduction to acetate. Here, we describe that M. thermoacetica can also use dimethyl sulfoxide as terminal electron acceptor. Growth of M. thermoacetica on glucose or H2  + CO2 was stimulated by dimethyl sulfoxide (DMSO). Membranes showed a DMSO reductase activity, that was induced by growing cells in presence of DMSO. The enzyme used reduced anthraquinone-2,6-disulfonate, benzyl- and methyl viologen as electron donor, but not NAD(P)H. Activity was highest at pH 5 and 60°C, the Km for DMSO was 2.4 mM. Potential DMSO reductase subunits were identified by peptide mass fingerprinting; they are encoded in a genomic region that contains three potential dmsA genes, three dmsB genes and one dmsC gene. Transcriptome analysis revealed that two different dmsAB gene clusters were induced in the presence of DMSO. The function of these two and their predicted biochemical features are discussed. In addition, the data are in line with the hypothesis that M. thermoacetica can use DMSO alongside CO2 as electron acceptor and DMSO reduction is catalysed by an energy-conserving, membrane-bound electron transport chain with DMSO as final electron acceptor.


Assuntos
Dimetil Sulfóxido , Moorella , Bactérias , Dióxido de Carbono , Moorella/genética
4.
Extremophiles ; 25(5-6): 413-424, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34480656

RESUMO

Acetogenic bacteria are a polyphyletic group of organisms that fix carbon dioxide under anaerobic, non-phototrophic conditions by reduction of two mol of CO2 to acetyl-CoA via the Wood-Ljungdahl pathway. This pathway also allows for lithotrophic growth with H2 as electron donor and this pathway is considered to be one of the oldest, if not the oldest metabolic pathway on Earth for CO2 reduction, since it is coupled to the synthesis of ATP. How ATP is synthesized has been an enigma for decades, but in the last decade two ferredoxin-dependent respiratory chains were discovered. Those respiratory chains comprise of a cytochrome-free, ferredoxin-dependent respiratory enzyme complex, which is either the Rnf or Ech complex. However, it was discovered already 50 years ago that some acetogens contain cytochromes and quinones, but their role had only a shadowy existence. Here, we review the literature on the characterization of cytochromes and quinones in acetogens and present a hypothesis that they may function in electron transport chains in addition to Rnf and Ech.


Assuntos
Ferredoxinas , Quinonas , Bactérias/metabolismo , Citocromos , Transporte de Elétrons , Ferredoxinas/metabolismo
5.
Environ Microbiol ; 23(8): 4661-4672, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34190373

RESUMO

Lactate is a universal metabolite and energy source, yet the mode of lactate metabolism in many strictly anaerobic microorganisms is still enigmatic. This sparked us to investigate the biochemistry and bioenergetics of lactate metabolism in the model acetogenic bacterium Moorella thermoacetica. Growth and metabolism were dependent on CO2 and the chemiosmotic gradient. We discovered a l-lactate:NAD+ oxidoreductase (LDH) in cell-free extracts, exhibiting an average specific activity of 362.8 ± 22.9 mU mg-1 . The enzyme was reversible, most active at 65°C and pH 9, with Km values of 23.1 ± 3.7 mM for l-lactate and 273.3 ± 39.1 µM for NAD+ . In-gel activity assays and mass spectrometric proteomics revealed that the ldh gene encoded the characterized LDH. Transcriptomic and genomic analyses showed that ldh expression was induced by lactate and there was a single nucleotide polymorphism near the predicted NAD+ binding site. Genes encoding central redox and energy metabolism complexes, such as, the energetic coupling site Ech2, menaquinone, and the electron bifurcating EtfABCX and MTHFR were also upregulated in cells grown on lactate. These findings ultimately lead to a redox-balanced metabolic model that shows how growth on lactate can proceed in a microorganism that only has a conventional NAD+ -reducing LDH.


Assuntos
L-Lactato Desidrogenase , NAD , Anaerobiose , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico , NAD/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...